TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion.

نویسندگان

  • M Sacher
  • Y Jiang
  • J Barrowman
  • A Scarpa
  • J Burston
  • L Zhang
  • D Schieltz
  • J R Yates
  • H Abeliovich
  • S Ferro-Novick
چکیده

We previously identified BET3 by its genetic interactions with BET1, a gene whose SNARE-like product acts in endoplasmic reticulum (ER)-to-Golgi transport. To gain insight into the function of Bet3p, we added three c-myc tags to its C-terminus and immunopurified this protein from a clarified detergent extract. Here we report that Bet3p is a member of a large complex ( approximately 800 kDa) that we call TRAPP (transport protein particle). We propose that TRAPP plays a key role in the targeting and/or fusion of ER-to-Golgi transport vesicles with their acceptor compartment. The localization of Bet3p to the cis-Golgi complex, as well as biochemical studies showing that Bet3p functions on this compartment, support this hypothesis. TRAPP contains at least nine other constituents, five of which have been identified and shown to be highly conserved novel proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRAPP stably associates with the Golgi and is required for vesicle docking.

Bet3p, a component of a large novel complex called TRAPP, acts upstream of endoplasmic reticulum (ER)-Golgi SNAREs. Unlike the SNAREs, which reside on multiple compartments, Bet3p is localized exclusively to Golgi membranes. While other proteins recycle from the Golgi to the ER, Bet3p and other TRAPP subunits remain associated with this membrane under conditions that block anterograde traffic. ...

متن کامل

mBet3p is required for homotypic COPII vesicle tethering in mammalian cells

TRAPPI is a large complex that mediates the tethering of COPII vesicles to the Golgi (heterotypic tethering) in the yeast Saccharomyces cerevisiae. In mammalian cells, COPII vesicles derived from the transitional endoplasmic reticulum (tER) do not tether directly to the Golgi, instead, they appear to tether to each other (homotypic tethering) to form vesicular tubular clusters (VTCs). We show t...

متن کامل

The Architecture of the Multisubunit TRAPP I Complex Suggests a Model for Vesicle Tethering

Transport protein particle (TRAPP) I is a multisubunit vesicle tethering factor composed of seven subunits involved in ER-to-Golgi trafficking. The functional mechanism of the complex and how the subunits interact to form a functional unit are unknown. Here, we have used a multidisciplinary approach that includes X-ray crystallography, electron microscopy, biochemistry, and yeast genetics to el...

متن کامل

Coupled ER to Golgi Transport Reconstituted with Purified Cytosolic Proteins

A cell-free vesicle fusion assay that reproduces a subreaction in transport of pro-alpha-factor from the ER to the Golgi complex has been used to fractionate yeast cytosol. Purified Sec18p, Uso1p, and LMA1 in the presence of ATP and GTP satisfies the requirement for cytosol in fusion of ER-derived vesicles with Golgi membranes. Although these purified factors are sufficient for vesicle docking ...

متن کامل

The identification of the SNARE complex required for the fusion of VLDL-transport vesicle with hepatic cis-Golgi.

VLDLs (very-low-density lipoproteins) are synthesized in the liver and play an important role in the pathogenesis of atherosclerosis. Following their biogenesis in hepatic ER (endoplasmic reticulum), nascent VLDLs are exported to the Golgi which is a physiologically regulatable event. We have previously shown that a unique ER-derived vesicle, the VTV (VLDL-transport vesicle), mediates the targe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 1998